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Abstract

Birth defects are a major cause of morbidity and mortality worldwide. There has been much 

progress in understanding the genetic basis of familial and syndromic forms of birth defects. 

However, the etiology of nonsydromic birth defects is not well-understood. Although there is still 

much work to be done, we now have the tools to accomplish the task. Advances in next-generation 

sequencing have introduced a sea of possibilities, from disease-gene discovery to clinical 

screening and diagnosis. These advances have been fruitful in identifying a host of candidate 

disease genes, spanning the spectrum of birth defects. With the advent of CRISPR-Cas9 gene 

editing, researchers now have a precise tool for characterizing this genetic variation in model 

systems. Work in model organisms has also illustrated the importance of epigenetics in human 

development and birth defects etiology. Here we review past and current knowledge in birth 

defects genetics. We describe genotyping and sequencing methods for the detection and analysis 

of rare and common variants. We remark on the utility of model organisms and explore 

epigenetics in the context of structural malformation. We conclude by highlighting approaches 

that may provide insight into the complex genetics of birth defects.
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Introduction

Nearly 8 million children are born in the world each year with a serious birth defect 

(Christianson et al., 2005). In the United States, birth defects affect at least 1 in every 33 

newborns and result in considerable mortality and long-term disability (Centers for Disease 

Control and Prevention, 2008). Progress has been made in identifying environmental risk 

factors in nonsyndromic birth defects;1 however, ample work remains in terms of 

characterizing the genetic basis for most of these conditions. Here we review the genetic 

basis of nonsyndromic structural birth defects, with a focus on the four most common 

structural birth defects: congenital heart defects (CHD), neural tube defects (NTD), clefts of 

the lip and/or palate (CLP), and hypospadias. We provide a historical perspective and 

describe current microarray- and sequencing-based approaches for identifying common and 

rare variants underlying structural birth defects. We discuss the strengths and limitations of 

each technique and provide examples of the successful implementation of each approach to 

identify genetic factors influencing the risk of nonsyndromic birth defects.

CHD, NTD, CLP, and hypospadias account for nearly half of the birth defects that occur in 

the United States (Parker et al., 2010; Porter et al., 2005). CHDs are abnormalities of the 

heart or great vessels that are present at birth. They are the most common type of birth 

defect. These malformations occur in about 8 of every 1000 live births, and approximately 

40% of babies born with the most serious CHDs die in infancy (Gilboa et al., 2010; 

Hoffman and Kaplan, 2002; Mathews et al., 2013; Moller et al., 1993; Pierpont et al., 2007; 

Yoon et al., 2001). Affected infants who survive often require repeated surgeries and 

lengthy hospitalization. Similarly, neural tube defects are often severe and debilitating. 

These malformations result from improper closure of the skull or vertebrae, leaving the 

brain or spinal cord exposed. In the United States, NTDs affect 0.6 in every 1000 births 

(Parker et al., 2010). Rates of NTDs are even higher in some developing countries (Castilla 

et al., 2003). CLP is a congenital malformation in which facial development is disrupted. It 

affects 2 of every 1000 births in the United States. Although it is not a major cause of infant 

mortality, children with craniofacial malformations often require surgery to repair the cleft 

lip or cleft palate and may encounter problems with feeding, speaking, hearing, or social 

stigmatism. Hypospadias is a structural malformation in which the opening of the urethra is 

located on the underside of the penis rather than on the tip. It affects approximately 3 per 

1000 births (Dolk et al., 2004; Fisch et al., 2009; Porter et al., 2005).

Genetic Landscape: Past

Several lines of evidence, in both animal and human studies, indicate that most 

nonsyndromic defects have a genetic component. Existing evidence from human studies 

includes increased concordance among monozygotic twins compared to dizygotic twins, 

among full siblings compared to half siblings, and among first-degree relative compared to 

second- and third-degree relatives. Such studies point to a genetic basis for CHD (Oyen et 

1Nonsyndromic birth defects are defined in the context of this paper as congenital malformations that are not associated with a known 
or identifiable syndrome.
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al., 2009), NTD (Janerich and Piper, 1978), CLP (Christensen and Mitchell, 1996), and 

hypospadias (Schnack et al., 2008).

Candidate Gene Studies

Early genetic studies of nonsyndromic birth defects focused on testing the association of a 

small number of candidate single-nucleotide polymorphisms (SNPs) with common birth 

defects, including CLP, NTDs, and CHDs. For many of these studies, candidate genes were 

selected based upon mouse models of normal and abnormal development. For example, 

animal studies initially highlighted growth factors involved in development of the palate. 

Several of these developmental genes were later included in a small case-control study of 

nonsyndromic cleft lip with or without cleft palate (Ardinger et al., 1989). This work 

revealed an association between transforming growth factor-alpha (TGFA) and CLP – an 

association that has been replicated in subsequent studies (Lu et al., 2014). Characterization 

of NTDs in two mouse models (spin cycle and crash) led to the discovery of CELSR1 

(Curtin et al., 2003) and associated proteins within the planar cell polarity pathway. Genes 

within this pathway (e.g. CELSR1, FUZ, VANGL1, VANGL2, and SCRIB) have since been 

linked to NTDs among humans. In the case of nonsyndromic CHDs, many of the critical 

cardiac transcription factors (e.g. NKX2-5, GATA4) were first characterized in the mouse 

then included as targets in candidate gene studies (Lyons et al., 1995; Molkentin et al., 

1994). Discovery of mutations in the transcription factors, ZIC3, GATA4, and NKX2-5 in 

CHD has since highlighted the critical role of these proteins in cardiac development 

(McCulley and Black, 2012).

Candidate gene studies of birth defects not only built upon findings from developmental 

biology but also gained insight from epidemiologic studies. It was clear by 19922 that 

periconceptional folate intake reduced the risk of NTD. Subsequent work established a link 

between maternal periconceptional multivitamin use and reduced risk of conotruncal heart 

defects, limb deficiencies, and CLP (Shaw et al., 1995a; Shaw et al., 1995b). Frosst et al. 

(1995) described a polymorphism in methylenetetrahydrofolate reductase (MTHFR 

677C>T) that encodes a thermolabile enzyme with diminished activity. Individuals with this 

form of MTHFR have a decreased concentration of serum folate and an increased 

concentration of homocysteine. Recognizing the potential implications, researchers soon 

tested for associations between MTHFR 677C>T and common birth defects. By the end of 

the decade, MTHFR 677C>T was established as an important risk factor in NTD (van der 

Put, Nathalie MJ et al., 1998) and conotruncal heart defects (Junker et al., 2001; van 

Beynum et al., 2006; Yin et al., 2012).

As custom genotyping microarrays became more available in the mid-2000s, researchers 

began to genotype entire pathways rather than individual genes. Despite changes in 

technology, folate-related genes continued to be an important focus of study (Hobbs et al., 

2014; Shaw et al., 2009; Zhu et al., 2012). This approach cast a broader net in search of 

common variants affecting disease risk. It did so by examining tens to hundreds of 

polymorphisms, within the context of gene-environment (Hobbs et al., 2014; Zhu et al., 

2In 1992, the United States Public Health Service made the recommendation that women of childbearing age consume 0.4 mg of folic 
acid per day to reduce the risk of having a pregnancy affected by a neural tube defect (Houk et al., 1992).
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2012) and maternal-fetal interactions (Li et al., 2014). An increasingly large number of 

study participants were necessary in order to account for multiple testing. Therefore, 

common birth defects (CHD, NTD, and CLP) received much of the initial focus.

Candidate gene studies are especially well-suited to situations where there is strong evidence 

for involvement of a pathway in disease. However, this method may be vulnerable to 

inadvertent bias in the selection of candidate genes. It is also possible that a significant 

association is detected by chance alone. Therefore, it is important that results be replicated. 

In the past, there have been a number of questionable genotype-phenotype associations 

(Hirschhorn et al., 2002), which might have been clarified by rigorous validation efforts. To 

address this issue, the National Human Genome Research Institute (NHGRI) working group 

has outlined several best practices for replicating genotype-phenotype associations (Chanock 

et al., 2007). The guidelines have become requisite standards for GWAS, but they are 

equally applicable to candidate gene studies. The report recommends that a comparable 

phenotype and population should be analyzed in both the initial study and the replication. It 

also stresses that the replication study should be large enough to identify the initial 

association. Ideally, the replication sample should be at least as large in number as the 

discovery sample.

Genetic Landscape: Present

Birth defects sometimes cluster within families and have a higher recurrence rate among 

full-siblings compared to half-siblings. This is especially true of syndromic birth defects, 

which often segregate as autosomal dominant, autosomal recessive, or X-linked traits (Fahed 

et al., 2013). In contrast, genotype may play only a minor role in birth defects caused by 

maternal exposure to a teratogen such as isotretinoin (Rosa, 1983).

Genetic variation among humans is often classified as either rare or common. Common 

variants are arbitrarily defined as those with a minor allele frequency (MAF) of at least 5% 

(1000 Genomes Project Consortium, 2012); whereas, rare variants are often characterized as 

having a MAF less than 1%. There is a longstanding debate about the respective 

contributions of common and rare variants to complex diseases (Bodmer and Bonilla, 2008; 

Gibson, 2012). In reality, both common and rare variants are thought to contribute to risk of 

nonsyndromic birth defects. In the following pages, we will describe both categories and 

will review methods for variant detection and analysis.

Common Variants

Genome wide association studies (GWAS) interrogate hundreds of thousands to millions of 

SNPs in order to identify associations between a genotype and complex disease. Nearly 

2000 GWAS have been reported since the initial publication of Ozaki et al. (2002). These 

studies have identified numerous common variants that are risk factors for disease (Welter et 

al., 2014). The majority of GWAS of birth defects have focused on CLP, CHD, and 

hypospadias (Table 1). To our knowledge, none have include NTDs. GWAS of CHDs have 

identified 5 SNPs reaching genome-wide significance (p < 5 × 10−8). The CHD-associated 

SNPs have modest odds ratios (OR) ranging from 1.2 to 1.5 and have global minor allele 

frequency (GMAF) of 0.2–0.3 (Table 1). Meanwhile, GWAS on CLP have reported SNPs 
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with greater effects size (OR = 1.4–2.6). Two GWAS has been conducted on hypospadias. 

The first identified a common variant (GMAF=.44) in the gene DGKK that is strongly 

associated with risk of hypospadias (van der Zanden, Loes FM et al., 2011). The second, 

much larger study identified 18 SNPs with genome-wide significance, accounting for a total 

of 8.7% of disease liability (Geller et al., 2014). A total of 56.9% disease liability was 

explained when all SNPs in the study were considered. This lends support to the 

infinitesimal model, in which hundreds or thousands of loci contribute to disease risk. In this 

model, statistically significant GWAS results represent only the largest of effects drawn 

from a normal distribution (Gibson, 2012).

Genotyping Technology

Genotyping methods have evolved rapidly since the first GWAS was completed in 2002. 

The number of variants assayed by GWAS has increased from around 10,000 SNPs in the 

early 2000s to 5 million SNPs at present (Hopper et al., 2012). The additional SNPs provide 

increased resolution of haplotypes, increased coverage of low frequency variants, and 

improved ability to infer genomic structural variation (Alkan et al., 2011). Structural 

variation, including insertions, deletions, and inversions, is broadly associated with 

nonsyndromic birth defects (Southard et al., 2012). SNP microarray and array comparative 

genomic hybridization (array CGH) have historically been the workhorses for detecting 

insertions and deletions, referred to as copy number variation (CNV). However, SNP 

microarrays may be gaining an edge because of their versatility. Increased density of SNP 

microarrays has made it possible to detect smaller structural variation and accurately resolve 

their breakpoints. Although the high density SNP microarray is a powerful tool, it is biased 

by a lower sensitivity in detecting single copy gains compared to single copy deletions. Even 

with high density chips, it can be challenging to consistently detect small events. Next-

generation sequencing (NGS), a high-throughput method for sequencing millions or billions 

of DNA strands in parallel, overcomes many of these limitations and is arguably better 

suited at detecting small structural variation. There are multiple bioinformatics and 

statistical considerations in CV detection (Alkan et al., 2011) that are beyond the scope of 

this paper.

GWAS of CHD, CLP, and hypospadias have been successful in identifying common 

variants that influence disease risk (Beaty et al., 2010; Birnbaum et al., 2009; Cordell et al., 

2013a; Cordell et al., 2013b; Geller et al., 2014; Hu et al., 2013; Ludwig et al., 2012; van der 

Zanden, Loes FM et al., 2011). These SNPs (Table 1) occur frequently in the population (af 

= 0.17-.49) and have modest effects size (OR = 1.3–2.6) (Figure 1). They may be directly 

involved in the disease etiology (i.e. functional or causal variant) or may “tag” a nearby 

functional variant that is involved in development of the disease. In most cases, the SNP 

being “tagged” is common within the population and has an effect size that is similar, if not 

slightly larger than the original SNP. In some instances, the GWAS points to genomic 

regions that are not only susceptible to perturbations caused by common variants but are 

also vulnerable to rare variants. Ventral anterior homeobox 1 (VAX1) proves an example of a 

gene that contains both common SNPs and rare functional variants. A GWAS first identified 

SNPs within VAX1 that were strongly associated with CLP. Sequencing of the gene among 

affected family trios later replicated the risk markers from the GWAS and identified both 
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common and rare variants associated within CLP (Butali et al., 2013). Interferon regulatory 

factor 6 (IRF6) provides a similar example. Mutations in this gene are known to cause Van 

der Woude syndrome, an autosomal dominant form of cleft lip and palate. Not only do rare 

variants in IRF6 cause syndromic cleft lip and palate, but a common variant within an IRF6 

enhancer influences disease risk by disrupting transcription factor binding (Rahimov et al., 

2008). Genomic variants that have a major impact on health or reproductive fitness are more 

likely to be under selective pressures, limiting allele transmission and reducing allele 

frequencies within the population, as shown in the upper left-hand quadrant of Figure 1. 

These mutations often have large effects but occur at such low frequency that even in large 

GWAS they fail to meet genome-wide significance.

Risk loci identified by GWAS account for only a small fraction of the observed heritability 

of any particular birth defect (Gibson, 2012). Rare variants are seen to play an increasingly 

important role in the etiology of birth defects, and it is likely that rare alleles explain some 

of the missing heritability of complex traits. NGS provides an effective means of identifying 

rare variants. Whole-exome sequencing (WES) is an especially efficient approach for 

functional variant discovery. WES uses probe hybridization enrichment to capture 50–60 

Mb of genomic DNA including, protein coding sequences, micro RNA, and in some cases 

untranslated regions flanking each gene (UTR). The exome comprises only 2% of the 

human genome; however, it contains the majority of known, disease-causing mutations. 

WES has been widely successful in identifying mutations responsible for inherited 

Mendelian diseases (Rabbani et al., 2012) and familial forms of birth defects (Arrington et 

al., 2012; Yu et al., 2013). As the cost of WES continues to fall, it becomes a more attractive 

tool for studying complex disorders, including birth defects. For example, exome 

sequencing of 362 cases-parent trios with CHD and 264 control-parent trios recently 

identified histone-modifying genes that are involved in CHD (Zaidi et al., 2013). Because 

CHD is under strong selective pressure, the investigators in this example focused on de novo 

mutations that might account for the sporadic pattern of occurrence among their cases. They 

found a very similar number of de novo protein-altering mutations among cases and 

controls, but interestingly the mutations among cases were more likely to occur in genes 

required for heart development. Based on the number de novo mutations in heart 

developmental genes, the paper estimated that such mutations have a role in 10% of severe 

nonsyndromic CHD. The results suggest that risk for isolated CHD is influenced by 

mutations that affect any one of a broad range of developmental genes. This mirrors a study 

among trios with autism, which showed that predicted damaging, de novo mutations among 

cases were more likely to affect genes expressed in the developing brain (Sanders et al., 

2012).

WES has recently been used alongside SNP arrays in order to identify de novo CNV in CHD 

(Glessner et al., 2014). In a study conducted by the Pediatric Cardiac Genomics Consortium, 

two complementary technologies, WES and microarray, were used to detect de novo 

mutations among 538 CHD case-parent trios and 1301 healthy controls. SNP microarray is 

very effective at identifying large CNV that reside throughout the genome; however, it is 

unable to identify small CNV, has a bias towards detecting single copy losses, and cannot 

map the location of copy number gains. In contrast, exome sequencing is often inaccurate at 
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identifying large structural variation, but is well-suited at detecting small CNV, which take 

the form of insertions or deletions (indels). By pairing WES with microarray, the 

investigators enhanced the effectiveness of both technologies and were able to identify 

recurrent de novo CNV at 15q11.2 and detect CNVs in genes that interact with key CHD 

proteins, NKX2-5 and GATA4 (Glessner et al., 2014).

WES has certain limitations. First, it covers only a small fraction of the genome. Regulatory 

elements play a critical role in development and disease risk (Wamstad et al., 2014); 

however, only a fraction of these elements are assessed by WES. A second limitation of 

WES is that it does not provide uniform coverage. Some regions of the exome have high 

coverage; whereas others receive limited coverage and suffer from low sensitivity in SNP 

detection. Uniformity of coverage for WES has improved in recent years, but there is still 

has much room for improvement (Meynert et al., 2014). WES also has limited accuracy in 

identifying structural variation greater than 30 bp. Synthetic long-read approaches may 

improve accuracy of indel detection from WES datasets (McCoy et al., 2014), but 

microarray and whole genome sequencing are currently more accurate alternatives for 

detecting long indels (Fang et al., 2014).

Whole-genome sequencing overcomes many of the limitations of WES. This method uses 

NGS technology to determine the DNA sequence of the human genome. Unlike WES, 

whole-genome sequencing does not depend upon targeted enrichment; thus, it provides 

fairly uniform coverage across much of the genome and has less bias in detecting non-

reference alleles (Meynert et al., 2014). Because of improved coverage, whole-genome 

sequencing requires a mean depth of approximately 14 reads to achieve 95% sensitivity; 

whereas, WES requires a mean on-target depth of 40 reads to reach this threshold (Meynert 

et al., 2014). Whole-genome sequencing has been used to study autism, CHD, and other 

complex diseases (Chaiyasap et al., 2014; Michaelson et al., 2012). It is able to identify 

potential, disease-causing variants both within and between genes and is more accurate than 

WES in detecting structural variation, such as insertions or deletions (Fang et al., 2014). 

With the release of the Illumina HiSeq X Ten system in 2014, the cost of sequencing the 

whole genome at 30X depth has dropped to approximately $1000 per sample (Meynert et 

al., 2014). An economic analysis by Meynert et al. (2014) recently demonstrated that the 

cost of sequencing the whole exome and the whole genome are roughly equivalent for 

institutions with access to a HiSeq X Ten system. Because access to this sequencing 

platform is limited, WES still remains in most cases a more affordable option for sequencing 

protein coding regions. A major consideration with whole genome sequencing is that it 

generates an enormous amount of data, which must be stored and analyzed. Analysis 

requires bioinformatics and statistical expertise that is not broadly available. There are also 

challenges in predicting the functional consequences of variants, especially those within the 

intragenic region (Kircher et al., 2014).

Identifying de novo mutations is another strategy for discovering rare causal variants. 

Samocha et al. (2014) recently described a framework for interpreting de novo mutations, in 

which the number of de novo mutations within a gene or gene-set is compared to the 

expected number of mutations. In this framework, expected mutation rates are estimated 

based on local sequence context and selective constraint. Evolutionary constraint is not only 
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informative within this context, but is also an important factor in prioritizing rare sequence 

variants. Several algorithms are available for estimating sequencing conservation among 

species: GERP++, PhyloP, SiPhy (Liu et al., 2013). Sequence variants may also be 

prioritized using functional prediction algorithms, such as PolyPhen2, SIFT, MutationTaster, 

MutationAssessor, FATHMM, or LRT (Liu et al., 2013). Functional prediction methods are 

individually prone to false positives; therefore, it is prudent to evaluate the consensus among 

models (Tennessen et al., 2012). Software is also available to help predict the effects of 

genomic variation upon RNA splicing; Human Splicing Finder represents one such tool 

(Desmet et al., 2009). Conservation- and functional-prediction tools are useful for 

prioritizing single nucleotide variation (SNV) within the exon. However, there are still 

major challenges to interpreting SNV within noncoding regions (Khurana et al., 2013). 

Prediction models are also not well suited to evaluating the consequences of insertions and 

deletions.

Functional Validation

Despite limitations, functional prediction models can be very helpful for population-based 

studies. Studies often identify multiple disease-associated variants. Functional predictions 

can help prioritize variants for further study. Likely causal variants may then be 

characterized in cell culture or in animal models. In studies where there is appropriate 

consent, lymphoblastoid cell lines can be generated from peripheral B lymphocytes. Cell 

lines possessing the candidate variant can be screened to detect phenotypic changes at a 

cellular level. In cases where a cell line from the proband is unavailable, gene editing may 

be used to introduce the candidate variant into an appropriate cell type. Several options are 

available for gene editing, including clustered regularly interspaced short palindromic 

repeats (CRISPRs), zinc-finger nucleases (ZFNs) and transcription activator–like effector 

nucleases (TALENs) (Gaj et al., 2013). The most recent addition to this group, CRISPR/

Cas, has proven to be a powerful tool for sequence specific gene editing. CRISPR/Cas 

systems can be used to efficiently introduce a putative causal variant into model systems 

(Cong et al., 2013). CRISPR/Cas systems have been used generate mice (Heckl et al., 2014), 

zebrafish (Hwang et al., 2013), and Xenopus tropicalis (Nakayama et al., 2013) models with 

targeted mutations.

Gene knockdown provides an alternative method of studying a candidate disease gene. 

Fakhro et al. (2011) used a Xenopus tropicalis gene knockdown system to identify human 

gene orthologs that are responsible for heterotaxy, which is a type of congenital heart 

disease caused by defects in left-right body patterning. A large excess of copy number 

variants in 61 genes had been discovered in human heterotaxy subjects compared to 

unaffected subjects. Twenty-two of these genes had Xenopus orthologs, and 7 of these were 

found to be expressed in the ciliated left-right organizer. Gene knockdown experiments with 

5 of the genes resulted in left-right heart morphological anomalies, thereby validating their 

function in cardiac left-right patterning. Animal models provide much of the foundation for 

what we know about developmental processes. However, these models are not without their 

shortcomings. Animals and humans often have differences in the rate and production of 

birth defects related to environment, teratogens, and modifying factors. In addition, genes 

are not uniformly conserved between humans and models organisms. These differences can 
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hinder translation of findings between animals to humans. Nonetheless, model systems are 

invaluable in the study of birth defects and will play an increasingly vital role in 

characterizing candidate disease-genes related to human birth defects.

Epigenetics and non-syndromic birth defects

Epigenetic modifications include DNA methylation, modification of histones, and DNA 

interactions with non-coding RNA. DNA methylation, the most studied epigenetic 

modification, constitutes an epigenetic mechanism whereby a methyl group is covalently 

bound to a cytosine base in the context of CpG dinucleotides. Methylation of cytosines in 

DNA has been implicated in the mechanism of silencing of gene expression, genomic 

imprinting, chromosomal stability and protection against repetitive element expression.

During pregnancy, folate-dependent nucleotide synthesis and DNA methylation are 

increased (Oommen et al., 2005), and altered DNA methylation may be an underlying 

mechanism in the development of birth defects (Blom et al., 2006; Li et al., 2005; Okano et 

al., 1999). Indeed, recent studies showed that altered DNA methylation is associated with 

NTD and CHD (Chen et al., 2010; Chowdhury et al., 2011a; Chowdhury et al., 2011b; 

Wang et al., 2010). DNA methylation is an attractive therapeutic target for congenital 

defects because maternal dietary supplementation may restore DNA methylation patterns 

and negate the hypomethylating effects of harmful maternal exposures such as bisphenol-A 

(Dolinoy et al., 2007). Various maternal factors (Waterland and Jirtle, 2003) implicated in 

abnormal fetal development have been shown to affect DNA methylation patterns 

(Baccarelli et al., 2009; Candiloro and Dobrovic, 2009; Cooney et al., 2002). Alterations in 

epigenetic phenomena, such as DNA methylation, are likely to play a crucial role in 

determining the fetal phenotype (Wolff et al., 1998). The combined effects of genetics and 

epigenetics in the intrauterine environment and subsequent fetal development are not well 

understood and warrant further investigation.

Animal studies have confirmed the importance of folic acid and folate metabolism in normal 

fetal growth and development. A homomorphic mutation in the mouse MTRR gene, which is 

necessary for utilization of methyl groups from folate metabolism, resulted in developmental 

delay and congenital malformations, including neural tube and heart defects (Padmanabhan 

et al., 2013). Transgenerational effects of MTRR deficiency were also observed. When 

maternal grandparents were MTRR deficient, wild type female grand progeny exhibited 

wide-spread genomic instability and altered placental gene expression, as well as an 

increased level of congenital malformations. These malformations persisted in wild type 

progeny for five generations and were independent of maternal environment, suggesting 

transgenerational epigenetic inheritance, triggered by defects in MTRR.

In human studies, McKay et al. (2012) found that interindividual differences in DNA 

methylation patterns at birth are influenced by environmental factors, such as maternal 

vitamin B12 levels, genetic factors such as infant MTRR and maternal MTHFR genotypes, as 

well as length of gestation. These factors influence folate metabolism and affect the pool of 

methyl groups available for DNA methylation. Differences in methylation at the IGF2 locus, 

important in intrauterine growth (Börzsönyi et al., 2012), were associated with maternal 

MTHFR 677C>T polymorphism. They conclude that both global and gene-specific DNA 
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methylation patterns in the developing fetus are dependent on genetic factors in both fetus 

and mother that influence folate metabolism, as well as the intrauterine environment 

(vitamin B12 levels). In a study of one pair of monozygotic twins who were discordant for 

renal agenesis, Jin et al. (2014) found no differences in SNPs, CNVs or indels between the 

twins. They did, however, find 514 differentially methylated regions that were localized to 

10 signaling pathways and 25 genes, including 6 genes that are known to be involved in 

organ development. These data implicate DNA methylation in the mechanism of 

organogenesis as well as in congenital malformations.

Recent work by Zaidi et al. (2013) suggests that aberrant histone modification may play a 

role in certain birth defects. This study compared the frequency of harmful de novo 

mutations among infants affected by CHD compared to healthy controls. Infants with CHD 

had a 7.5-fold excess of protein-altering de novo mutations (premature termination, 

frameshift or splice site) in genes that are important in cardiac development. Notably, cases 

also had a significant excess of mutations in genes involved in histone modifications. 

Histone modifications influence gene transcription throughout life and are especially 

important in regulating developmental genes.

Most research concerning congenital malformations has focused on maternal or fetal 

genetics and/or epigenetics. The paternal genetic component of human birth defects has not 

been sufficiently studied. Some recent evidence has emerged from experimental work to 

suggest paternal genetics contribute to risk of birth defects in offspring. For example, 

Lambrot et al. (2013) determined that paternal dietary folate deficiency increases birth 

defects in offspring. It was demonstrated that a folate deficient diet alters the sperm DNA 

methylation at loci associated with genes responsible for normal development and disease. 

Also, sperm histone methylation was altered in folate deficient males, suggesting that 

dietary insufficiency of folate could alter gene expression. Folate deficient males had a 

significantly reduced pregnancy rate when mated to control females due to increased post-

implantation resorption. An increase in the frequency of malformations was observed in 

offspring of folate deficient males, including hydrocephalus, limb and muscle or skeletal 

defects. These data suggest that male folate levels may also be important in the prevention 

of structural birth defects. Therefore, it may be useful to consider both maternal and paternal 

folate deficiency in future studies of birth defects.

Genetic Landscape: Future

As Figure 2 illustrates, most birth defects are multifactorial in origin. Specifically, maternal 

environment (e.g. medications, folate, nutrition, obesity, smoking, alcohol) interacts with 

maternal genetics, epigenetics, and hormones to influence various metabolic processes and 

signaling pathways. These factors shape the intrauterine environment and can interact with 

fetal genetics and epigenetics to either facilitate or disrupt embryogenesis. Recent 

developments have helped to better understand such risk factors. In short, epidemiology has 

identify environmental risk factors; genomics has provided an unprecedented tool for 

identifying genetic variants within an affected population; model systems and gene editing 

have been invaluable in studying development and disease; and new analytical approaches 

have provided a means of interpreting complex datasets. Aided by these tools, research has 
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shifted from a gene-centered analysis to a systems-based analysis that examines the 

interactions among metabolic pathways and gene networks within the context of maternal 

and intrauterine environments. Much progress has been made; however, there is still much 

work to be done.

There have been successful reductions in some birth defects through research and 

population-based initiatives, for example, folate supplementation and fortification; yet, birth 

defects continue to be a global public health problem. Developing countries may not have 

the resources to follow through with nutritional or environmental preventive measures when 

malnutrition remains all too common. Birth defects persist in developed countries because 

nutritional, genetic, epigenetic environmental and unknown factors have not been fully 

investigated. Continued research in the areas of epidemiology, genetics, and epigenetics will 

lessen the global burden of birth defects through personalized and population-based 

preventative strategies.
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Figure 1. Allele frequency, effect size, and select birth defects
Common single nucleotide polymorphisms (SNPs) with modest effect size (middle-center) 

have been identified by association studies of sporadic cases of congenital heart defects 

(CHD), neural tube defects (NTD), clefts of the lip and/or palate (CLP), and hypospadias. In 

contrast, certain rare mutations appear to have high penetrance/effect size for the above-

listed birth defects. The genes listed in the upper left are rare causal mutations that have 

been substantiated among patient groups and characterized in model systems. There are few 

if any adequately powered studies for these mutations; therefore, the OR for mutations is 

estimated based upon published literature and is intended to illustrate the general trend. 

Disease-associated SNPs are identified in the lower middle part of the figure by spheres, 

which are scaled in size based upon the total number of cases and controls in combined 

discovery and validation studies, from 479 individuals in the smallest study to 10,091 

individuals in the largest study. Allele frequency represents global minor allele frequency 

(GMAF) from dbSNP. Effect sizes in the figure are based upon GWAS in Table 1 and meta-

analyses of candidate-gene association studies (Cai et al., 2014; Feng et al., 2014; Jiang et 

al., 2014; Lu et al., 2014; Yadav et al., 2014; Yin et al., 2012).

Webber et al. Page 18

Birth Defects Res A Clin Mol Teratol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Interactions between genetics, epigenetics, maternal hormonal levels, and 
environmental exposures during embryonic development
Disruptions or anomalies in these interrelated systems may perturb the precise 

developmental program, leading to an increased risk of structural birth defects. 

Environmental and lifestyle factors, such as obesity, cigarette smoke, alcohol, nutrient 

intake, and folate supplementation influence folate and homocysteine metabolism and may 

impact oxidative stress. Oxidative stress and increased homocysteine can affect signaling 

pathways that include critical developmental genes, such as GATA4, HAND2, NKX2.5 and 

RFC1. Aberrant folate or homocysteine metabolism can also drain the pool of methyl groups 

that is critical to maintaining gene expression levels through DNA- and histone-methylation. 

This reflects the multifactorial origin of most nonsyndromic birth defects.
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